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THE RECONSTRUCTION PROBLEM
REVISITED

Ambady Suresh
Dvnacs Engineering. Inc.,

Cleveland. Ohio 44135, USA.

Abstract

The role of reconstruction in avoiding oscillations in upwind schemes is recxamined.
with the aim of providing simple, concise proofs. In one dimension. it is shown that if the
reconstruction is any arbitrary function bounded by neighboring cell averages and increasing
within a cell for increasing data, the resulting scheme is monotonicity preserving, even though
the reconstructed function may have overshoots and undershoots at the cell edges and 1s 1n
general not a monotone function. In the special case of linear reconstruction, it is shown
that merely bounding the reconstruction between neighboring cell averages is sufficient to
obtain a monotonicity preserving scheme.

In two dimensions, it is shown that some 1D TVD limiters applied in each direction
result in schemes that are not positivity preserving, i.e. do not give positive updates when
the data are positive. A simple proof is given to show that if the reconstruction inside the cell
is bounded by the neighboring cell averages (including corner neighbors), then the scheme
is positivity preserving. A new limiter that enforces this condition but is not as dissipative

as the Minmod limiter is also presented.

Introduction

In this paper, we begin by reexamining the reconstruction step in upwind schemes!~*

with the aim of deriving slightly more general results and providing simple, concise proofs.
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To introduce the one dimensional problem, consider the model equation
Uy + u, = 0, (1

wlere f is time, @ is distance, and w(x,0) = ug(x) is the initial condition. We denote by ]

the cell averages of u(.r,#") on a uniform grid of width Az and cell center ; = jAr,

1 /J‘J +Ax/2 ( ) J R
= — u{a, ") da. 2

J Aux r;—Ar/f2 v ( )

Let R7(£). £ = (¢ — x;)/Ah denote the reconstruction of u(x,t") in the cell j expressed

in local coordinates. The new cell averages are obtained by convecting the reconstructed

profiles a time step and averaging the resulting profiles over a cell. The result is

1/2 1/2-)
@ = R (€)dE + R!(€) d¢ (3)

1/2=) —1/2

where A = At/h. . For clarity, we omit the superscript n when there is no confusion. i.e i
denotes .

For increasing data. i.e. @; > u,_; for all j, we are interested in schemes for which
the new cell averages are also increasing. Such schemes are called monotonicity-preserving
schemes. They mimic the exact solution and as a special case it follows that a step function
propagates without spurious oscillations.

The question we are interested in is:

What are sufficient conditions on the reconstruction R;(€) that will ensure that the scheme
(3) is monotonicity-preserving ¢

This question has been studied extensively over the last two decades in the upwind liter-
ature, and we review existing conditions below. Our aim is to provide a new, simple, concise
proof that covers the general case. Generality is achieved here by considering a) completely
arbitrary functions for reconstruction and b) by considering Monotonicity-Preserving (MP)
schemes as opposed to Total Variation Diminishing (TVD) schemes. TVD schemes are
monotonicity-preserving, but not vice-versa. In addition, MP schemes can be designed to
avoid the chronic loss of accuracy at smooth extrema incurred by TVD schemes (see Ref. 7

for an example).
Existing Conditions

There are two different conditions stated in the literature. The first condition. introduced

by Van Leer! in his seminal paper on upwind schemes and often called Van Leer’s condition.

[8N]
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Figure 1: An oscillation created by reconstructions hounded by neighboring cell averages.
A= 0.25.

states that the reconstruction R;(£) must be bounded by the neighboring cell averages, i.e.

for increasing data, the condition is
wj—1 < Ri(6) < win (4)

While this condition suffices for linear reconstructions, we will show by an explicit coun-
terexample that this is not sufficient for general reconstructions. Indeed, let u;j_3 = —6.
Uy = =3 tjmy = 0, 45 = 1, up = 4, and the reconstructions be R;_»(§) = —3 + 6¢;
R,_(&) = (4 — 246 —436%)/T: Rj(€) = 1 — (4 = 24§ - 18€2)/7: R;41(€) = 4. These re-
constructions are plotted in Fig. 1. Note that the data is increasing and (4) is satisfied in
each cell. However, the cell averages at the next time step given by (3) for A = 1/4 are
Wit =27/112, it = —3/28, and u’f} =103/28. So monotonicity is not preserved.

Another condition (Harten et. al?, LeVeq1193) is stated in terms of the total variation of

the reconstruction. Let TV(f(z)) denote the total variation of f(x) given by

+oa
TV(f) = /_ )l (5)
and TV (@) denote the discrete total variation of the cell averages given by
. I
TV(a)= Y |y — ujl (6)
hk=—n

Then the required condition on the reconstruction is that
TV(R(.)) < TV(u). (7)
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This condition holds for any general reconstruction. For increasing data, (7) implies that R(.)
is an increasing function with no overshoots at the cell faces. However, designing schemes
that satisfy this condition is a bit more difficult because the conditions on R;(£) now involve
R,_1(&) and R;41(£) in addition to the cell averages. This condition is also unnecessarily
restrictive since most of the well known TVD schemes do not satisfy it.

For example, consider the data given by w;_y = 0, @; = 0.2, w;4; = 0.8, and @4, = 2.6.
The reconstructions obtained by the popular Superbee limiter and Van Leer's Average limiter
( (15) and (46) in the appendix) are identical and given by R;(£) = 0.2+0.4 ¢ and Ri1(€) =
0.8 + 1.2£. which has an overshoot at the face &iy172. Thus both these schemes violate (7)
although both limiters are monotonicity preserving. This example clearly illustrates that
condition (7) is unnecessarily restrictive for monotonicity preservation.

Thus, of the two conditions available in the literature, neither are completely satisfactory.
Van Leer’s condition fails for general reconstructions while the second condition (7) is so
restrictive that many well known schemes do not satisfy it. In the next section. we introduce
a slight modification of Van Leer’s condition that is more general than (7) and for which

monotonicity preservation can be proved for general R;(¢).
A Modified Condition

First, we need two inequalities that hold for increasing functions. A function f(z) is an
increasing function if for any xy > wq. f(x1) > f(r2). Let f(x) be an increasing function in
[—1/2,1/2] and let its mean over this interval be denoted by f. Then, for 0 < \ < 1, we

have the following two inequalities that are useful.

9]

1 r1/2 s 1 1/2=\ P
3 by J©d€ 2 10 = [T ed < . (3)

The first inequality states that sampling an increasing function from the right yields an
average greater than the cell average. To prove this inequality, note that if we denote by
g(A) the left hand side of the first inequality, we get Ag’(A) = f(1/2 — A) — g()). As this is
nonpositive for all A, the inequality follows. The proof of the second inequality is similar.
The modified condition can be stated as follows:

Theorem-1: Assume we have increasing data and the reconstructions R;(€) satisfy the three

conditions given below for all j:

Ri(&) =u (9)
uj—1 < Ri(€) < ujp (10)
R;(&) 15 an icreasing function (11)
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Then, for 0 < X < 1, the cell averages al the next time step are also increasing and (3)
becomes a monotonicity preserving scheme.
Proof:

Since R;_1(£) is an increasing function, the first integral in (3) satisfies

172
A//Z Ra(§)dE Z un (12)
and from (10) the second integral satisfies
1/2-)
[, miede = (1= A,y (13)

Thus 17’]-'“ > w; 1. Similarly, from the bounds on R; (&), we have

1/2
/ R,_»(6)de < iy (14)

1/2-2

and since R,_;(£) is an increasing function,

1/2 \
1_)\ /1/2 (&) dé < uj_y. (15)
So ﬂ;»'fll < 1,-1. Hence, ﬂff“ > fl’;fll completing the proof. O

Thus. if we add to Van Leer's condition the requirement that the reconstruction be
increasing when the data are increasing, we can prove monotonicity preservation for any
general reconstruction. Note that conditions (9). (10) and (11) are more general than (7)
since TV(R(.)) can be greater than TV (u). In addition, all the well known second order
TVD schemes satisfy (9), (10) and (11) so that Theorem -1 is not unusually restrictive.

Although adding the requirement that the reconstruction be a monotone function 1s a
fairly trivial modification, we have not seen Theorem - 1 stated and proved anvwhere in the
literature. Indeed. this is all the more surprising since the fairly restrictive condition (7) 1s
widely quoted. Monotonicity of the reconstruction was imposed as a condition by Colella
and Woodward® in the design of their piecewise parabolic method (PPM). but monotonicity

preservation is not proved there.
TVD Schemes

TVD schemes have some theoretical advantages over monotonicity preserving schemes
such as a guaranteed convergence to a weak solution of the underlying conservation law

2. Monotonicity-preserving schemes differ from TVD schemes only in their treatment of

it
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local extrema. It is not surprising, therefore, that with some recipe for reconstruction at an
extrema, a result similar to Theorem - 1 can be proved for TVD schemes.

Theorem-2: Let the reconstructions R;(€) satisfy the conditions given below for all j:

R;(€) = uy; (16)
when ;o <uj <ty
iy < Rj(€) L ujpr and Rj(€) is an increasing function; (17)

when w;_y > u; > wj4q :

o1 2 Ri(€) > w4y and R;(€) is a decreasing [function; (18)
otherwise :
R (&) = u,. (19)

Then, for 0 <A <1, (3) becomes a TVD scheme.

Proof: We introduce some terminology on data types. Let us say the data is increasing at
J when w,; < w; < ujyy and decreasing at j when @;_; > w; > w,;4,. From Theorem-1 it
follows that for data increasing at j and j — 1. or decreasing at j and j — 1 the new cell

averages lie inside the range defined by neighboring old cell averages, i.e.

Min(a;, a;-,) < @'t < Max(i;, @) 20
Jr J VAR

Consider the case where data is increasing at j but we have a local minimum at j — 1, i.e.
w;—y < u oy and w;_y < ;. In this case using (19) and (3) we can show that the bound (20)
is still satisfied. Similarly, we can show that the bound (20) holds also for all other cases
such as data decreasing at j — 1 and a minimum at j, or increasing at j — 1 and a maximum
at j etc. In short, (20) holds for all data.

Since (20) holds for all data, no new extrema can be created and the value of a local
maximum can only decrease and the value of a local minimum can only increase. Hence the

total variation can only decrease and the theorem is proved. 0O
The Linear Case

The linear case has been exhaustively studied '~¢ in the context of TVD flux limiters
and will not be repeated here. However, we wish to highlight the following peculiarity
of the linear case, namely that monotonicity is preserved even without requiring that the
reconstruction be increasing for increasing data. i.e. even without (11). In other words, for

increasing data, the slopes can be decreasing and monotonicity is still preserved so long as
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the linear reconstructions remain bounded by neighboring cell averages. For completeness.
a proof is sketched out below.

Assume increasing data and linear reconstructions R;(§) = u; + s;€ satisfying (10) for
all j. The case where u; = u;_; is trivial. For u; # w;_i, by a suitable normalization we can
take the data to be w;4y > 1, u; = 1, u;y =0 and @;_, < 0. A direct calculation of (3)
gives

u;’“ — W =1= A=Ay + A1 - M(2s,_1 — 5, — 5j-2)/2 (21)

From (10). |s;] < 2, |s;-1] < Min(=2u;-,2),

be verified that the right hand side of (21) is positive for 0 < A <1 and w;—, < 0. Thus

82| < =2u;a. Under these bounds, 1t can

monotonicity is preserved.
Note however that without condition (11). w1 can lie outside of [u;_1,u;]. So here we
J J J
have an instance of the scheme being monotonicity preserving without being bounded by
g Y1 A

the initial data.
Reconstruction in Two Dimensions
For the two-dimensional advection equation

uy 4+ auy + bu, =0
y

S
[S]
~—

with initial condition w(x.y.0) = up(x,y). a set of conditions under which higher order
reconstructions preserve monotonicity is not known. The focus then shifts to schemes that
are positivity-preserving (PP) P71 where some theoretical results can be proved. These are
schemes that give positive updates when the initial data are positive, or equivalently, where
the cell averages at time n + 1 are bounded by the cell averages at time level n. In the
meteorology literature, such schemes are also referred to as positive definite.

In one dimension. the boundedness result used to prove Theorem-1, i.e. that
= n+41 - DX
i1 < < u; (23)

suffices to prove monotonicity. In two dimensions, this is no longer the case and PP schemes
will not preserve monotonicity in general.

To introduce the reconstruction problem here, let us begin with a base scheme that uses
midpoint rule in time and linear reconstructions 1u each cell. This scheme is chosen since:
a) it can be readily extended to the Euler equations, b) it requires only one Riemann solver
calculation per face per timestep and c) it has already been implemented in commercial

codes!”.

=1
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We assume a uniform grid of spacing Ar and Ay and « > 0 and b > 0. A linear

reconstruction is assumed in each cell that can be written in normalized coordinates as
_ .4 or vy .
Ri;=uw;+ 5,6+ 5 (24)
with [£], ] < 1/2. The scheme can be written as

w = ul = A (u

n+1/2 _ntl/2 n+1/2 n+1/2
0 1] ) — Ayl ) (25)

i+1/2, ~ Yic1)2, v Wijr12 = Yijoay

where A, = aAt/Ax. A\, = bAt/Ax and the interface values are obtained by taking a half

timestep inside the cell and can be derived as

} n+1/2 — 5n QY /e

uiﬂl%j =uf; +( VST /2 = ASE /2 (26)
n+ — -t ¢ ~

Ui = Ut )02 = A ST [2

The linear scheme with S* and S/, given by their central difference values such as
12} i
ary . 7. . a7 . i & 1S Yord
ST = (Wigry — Uiy j)/2 (27)

is second order accurate in time and space and stable in the region A\, > 0, Ay 20, A+, < L.

Thus the time step can be defined in terms of the CFL number by
At =CFL/(a/Ax + b/ Ay) (28)

We can now state the reconstruction problem in two dimensions:

What are sufficient conditions on the reconstruction R;;(€.n) that will ensure that the
scheme (25) is positivity preserving ¥

For example, if we use any of the TVD limiters to calculate the x and y slopes, is the
resulting scheme positivity preserving 7 The answer to this depends on the limiter as the

following example shows. C'onsider negative data given by

U_11 = —1. (_10‘] - O
il_g.l) = —100 &_1‘0 = —1, ‘l_l()‘() =0 ’(711.0 =0 (‘)9)
'(1_1__1 = —1 ’fto’_l = —].O., 'l-ll‘_] = —100 -
‘l_l()__z == '—100
For A, = 0.6,A, = 0.2, both the Superbee (46) and the Average limiter (45) (these
limiters are defined in the appendix below) give ug}h' = 16/50, which shows that these
schemes do not preserve positivity. The Minmod limiter, however, gives af§' = —57/50,

which is acceptable. A closer look at the reconstructions in this example reveals that for the

Superbee and Average limiters, the reconstructions in each cell fall outside the range of the

o o)
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cell averages of its neighbors. This condition turns out to be sufficient to prove positivity as
shown below.

Let us define N;; to be the set of cell averages of the immediate first order neighbors of
the cell (z. ) and w; ;.

Wisi g1y Wighls Uil 41,

N;j= Uimrjy  Wijs  Uigdjs (30)

Uit j—1> Uij—1. Uig1j—1

and [; ; to be the range of variation of v on N ;.
.= [Min[NV, ], Max[N; 1] (31)

Theorem-3: Assume that for the scheme (25) the reconstruction in cach cell is bounded by

its immediate neighbors, i.e. for all (ij)
Ry el (32)

Then. for A\, + A, <1,
at e U Ul Ul m (33)

i.e. the cell average al the next timestep lies inside the union of the averages in the neigh-
borhoods of (1,j). (i — 1.3) and (1,7 —1).

Proof: Using (25) and (26), we can write the scheme as

ﬂn+1 = (1= A — At — A SE/2 = Ay STi/2)
A (o + (1= Ay) 111,/’—/\%11/") (34)
+/\ ([LIJ 1_/\1 b 1/—]/ + y "v-/_l/

which can be written in terms of the normalized reconstructions as

(1"“ = (1=X = X)) Rij(=A/2,=X,/2)
A By (0= A/ 2.=2,/2) (33)

+ A, Rijo1(=As/ 2. 1—,\ )/ 2)

Under the stability limit A, + A, < L. the points where the reconstructions are sampled in
the above equation lie inside their respective cells. Thus the right hand side is a convex
combination of sampled reconstruction values which are bounded by (32) and thus (33) 1s
immediate. a
It is easily verified that Theorem-3 holds true for all propagation directions provided

the interface values (26) are defined from upwind cells. The general C'FL limit is then
[Aul 4+ [Ay] <1
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The condition that the reconstruction be bounded over the whole cell by all its immediate
neighbors (including corner neighbors) was introduced by Barth and Jesperson'® in the
context of unstructured grids. The above result shows that this condition is useful for
constructing PP schemes in multi-dimensions for structured meshes as well.

We remark that the choice of stencil, i.e. (30) used above is somewhat arbitrary. In fact,
for the Minmod scheme, the reconstruction is so tightly constrained that R;; actually lies
inside the range of u; ;, and two linearly independent cells from ;4 j, and w; j+;. From this
it follows that i'z}ljl is bounded by the four values ;. w,—y;, %1, and w;—1,;-1, @ much
smaller stencil than (33).

In the next section, we derive an efficient limiter that enforces (32) but is not as dissipative

as the Minmod limiter.

A PP Limiter

The procedure for modifying the slopes to satisfy (32) is far from unique. The approach
described here is similar to the approach of Barth and Jesperson'®, adapted to structured
grids and modified so as to depend continuously on the data.

To satisfy (32) within a cell, the idea is to restrict the slopes so that the reconstructed
values at the four corners of the cell lie inside the required interval, i.e., (31). Due to the
symmetry of the grid, this is equivalent to restricting |S7;| + |S7;| to lie inside another
interval. We skip the details and give the result in algorithm form.

Let the slopes be defined initially by their centered difference values, namely

v e o g
Sty = (Wiga; — tim1,5) /2 (36)
oY = — ¢
oY = (Wi — U5,5-1)/2

and let V,;, and V},,, be defined by

Uimtjbr = Uijo Wijpr = Wiy Uipy 41 — Ui,
Vinin = Min Ui_1; — Ui ,  —€, Uip1,; — Ui, (37)

Uitj-1 = Wiy Uijm1 = Wijy Uigy -1 — Uiy
Uimt,j4l = Wigs Uijg1 = Wijy Wity jpr — Ui,
’7' _ Pt R Py L 7. R Y 0 %)
Viar = Max Uimyj — Ui je € Uig1,; — Wi js (38)
Uiy j—1 — Wiy Wi — Uiy, Uigy o1 — Ui
where ¢ is a small positive number (¢ = 107'% in all our numerical experiments). Then we

define

v Min(|Viin | [ Vinae|)
vy ' 39
(1S5, 1+ 15250 >

The final slopes are then
ST = Min(1, V) S7, '
= Min(1.1) 87 (40)

A[’
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It can be verified that after limiting, the reconstructed values in the cell (i. ) lie inside the
interval [;; and that the reconstruction depends continuously on the data.

The main problem with this and other limiters is the loss of accuracy at extrema which
make these schemes only first order accurate in the Max. norm. If a scheme is required to be
second order accurate everywhere (i.e. in the Max. norm), such a scheme will advect second
order polynomials exactly. It follows that while advecting smooth extrema such a scheme
will give updates not bounded by the data. It thus appears that second order accuracy in
the Max. norm and positivity preservation are mutually exclusive.

This is not to say that some compromise might be found where positivity preservation
may be relaxed in some useful way near extrema. However, such a compromise has eluded

us thus far.
Numerical Experiments

We present some numerical experiments on two dimensional advection to assess the per-
formance of PP schemes. We solve (22) on the domain [-1,1] X [-1.1]. Periodic boundary
conditions are imposed at the boundaries. A number of initial conditions, advection direc-
tions and timesteps were explored but only two cases are reported here. After computation.,
we scan the computed solution for overshoots and undershoots and present line plots through
these regions. These represent the worst case results.

Example 1: In this example, a uniform grid of 120 X 120 cells 1s used with convection
velocities @ = 0.8 and b = 0.1. The timestep was calculated by (28) with CFL = 0.8 and the
final time is t = 20, which corresponds to 8 periods in r and one period in y. The initial

condition 1s ‘ o

u(e,y,0) =1 for (% + yHY?r < 0.4
. (41)
=0 otherwise
In Figure 2. the results along the line y = —0.264 (j=45) are shown. The solid line is the
exact solution. As can be seen hoth the Superbee and the Average limiter give significant
overshoots while the Minmod and PP limiters have no overshoots or undershoots. The PP
limiter is not as dissipative as the Minmod limiter but shock resolution is still quite poor.

In terms of efficiency. the PP limiter is in the same ball park as any of the TVD schemes.

Example-2: The initial condition here is

u(x.y.0) = exp(—3(x* +y°)) (12)
with 3 = 200. The convection velocities are « = 1 and b = 1. The same grid and CFL
number are used as in Example-1, but the final time is t = 2 which corresponds to one

period in both x and y directions. The results along the line y =0 are shown in Figure 3.
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where the loss of accuracy at extrema is clearly visible. The new PP limiter gives results
similar to the Average limiter. The results from the Minmod limiter are much poorer and
are not shown.

We remark that a large number of numerical experiments with various initial conditions
seems to suggest that all the TVD limiters are positivity preserving when the advection

direction is 45 degrees.
Conclusions

In this paper, we have considered anew what conditions a reconstruction must satisfy for an
upwind scheme to have desirable nonoscillatory properties. In one dimension, a simple con-
cise proof is presented that if any general reconstruction is increasing for increasing data and
bounded by neighboring cell averages. the resulting scheme is monotonicity-preserving. In
the special case of linear reconstruction it is shown that merely bounding the reconstruction
between neighboring cell averages is sufficient for monotonicity preservation.

In two dimensions it is shown that if the reconstruction over the whole cell is bounded
by the averages of all its first order neighbors, then the scheme is positivity preserving. An
efficient limiter that achieves this is also presented.

We hope that these concise proofs will be useful in the teaching of upwind methods and

also lead to the design of new schemes.
Appendix

For completeness, we summarize several popular one dimensional TVD limiters here. The
reconstruction in each cell is assumed to be R;(£) = u; + s, € and these limiters are various
recipes to determine s; from the data. Let s, and s_ denote the forward and backward
differences given by

sS4 = (uj-H - ﬂj) (4;)
= (1 = wj1)

/s

The Minmod limiter is given by

1
s; = 5 [sgn(ss) + sgn(s_)] Min([s_|, |s4)) (44)

~

The Average limiter of Van Leer can be written as

1 .
s; =3 [sgn(ss) + sgn(s_ )] Min((sy +s-)/2, 2|s_], 2|s4]) (45)
and the Superbee limiter of Roe can be written as
1 ) ‘
s; =3 [sgn(sy) + sgn(s_)] Min(Max(|s4 ], |s=]), 2[5, 2|s4]) (46)
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As mentioned above. the Minmod limiter is the most diffusive and the Superbee the least

diffusive.
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Figure 2: Advection of (41) with a=0.3. b= 0.1. CFL = 0.8, and { = 20. 120 X 120 uniform
grid
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